
 

 

 

Abstract This paper describes the application of Two-Level 

Transplant Evolution (TE) that can evolve control programs using a 

variable length linear genome to govern the mapping of a Backus 

Naur Form grammar definition. TE combines Grammatical Evolution 

(on the genotype level) with Genetic Programming (tree structures on 

the phenotype level). To increase the efficiency of Transplant 

Evolution (TE) the parallel Differential Evolution was added.  

 

Keywords general controllers, optimization, two-level trans- 

plant evolution.  

I. INTRODUCTION 

HE aim of this paper is to describe a new optimization 

method that can create control equations of general 

controllers. For this type of optimization a new method was 

created and we call it Two-Level Transplant Evolution 

(TLTE). This method allowed us to apply advanced methods 

of optimization, for example direct tree reducing of tree 

structure of control equation. The reduction method was 

named Arithmetic Tree Reducing (ART). For the optimization 

of control equations of general controllers it is suitable to 

combine two evolutionary algorithms. The main goal in the 

first level of TLTE is the optimization of the structure of 

general controllers. In the second level of TLTE the concrete 

parameters are optimized and the unknown abstract 

parameters in the structure of equations are set. The method 

TLTE was created by the combination of the Transplant 

Evolution method (TE) and the Differential Evolution method 

(DE) [8]. The Transplant Evolution (TE) optimizes the 

structure of the solution with unknown abstract parameters 

and the DE optimizes the parameters in this structure. The 

parameters are real numbers. The real numbers are not easy to 

find directly in TE without DE. Some new methods for 

evaluation of the quality of the found control equation are 

described here, which allow us evaluate their quality. These 

can be used in the case when the simulation of the control 

process cannot be finished. Some practical applications are 

shown in the results. In all calculation of TLTE the control 

equation had a better quality of the control process, than the 
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classical PSD controllers and Takahashi`s modification of the 

PSD controller. 

II. TRANSPLANT EVOLUTION 

Transplant Evolution (TE) was inspired by biological 

transplantation. It is an analogy to the transplant surgery of 

organs. Every transplanted organ was created by DNA 

information but some parts of an ill body can be replaced by a 

new organ from the database of organs. The description parts 

of individual (organs) in the database are not stored on the 

level DNA (genotype). In Transplant Evolution (TE) every 

individual part (organ) is created by the translation of 

grammar rules similar to Grammatical Evolution (GE), but 

Transplant Evolution (TE) does not store the genotype and the 

grammatical rules are chosen randomly. The newly created 

structure is stored only as a tree. This is like Genetic 

Programming (GP).  

The Transplant Evolution algorithm (TE) combines the best 

properties of Genetic Programming (GP) [2] and Grammatical 

Evolution (GE) [4], [5], [9], [10]. The Two-Level Transplant 

Evolution (TLTE) in addition to that uses the Differential 

Evolution algorithm (DE). Optimization of the numerical 

parameters of general controllers in recurrent control 

equations of general controllers is a very difficult problem. 

We applied the second level of optimization by the 

Differential Evolution method (DE). The individuals in TE 

and TLTE are represented only by a phenotype in the shape of 

an object tree. During the initialization of population and 

during the creation of these phenotypes, similar methods are 

used as in GE. In Grammatical Evolution the numerically 

represented chromosomes are used. The codons of these 

chromosomes are used for the selection of some rule from a 

set of rules. In Transplant Evolution the chromosomes and 

codons are not used, but for the selection of some rule from a 

set of rules randomly generated numbers are used. These 

numbers are not stored in the individual chromosome. The 

new individuals in the population are created with the use of 

analytic and generative grammar and by using crossover and 

mutation operators. These operators are projected for work 

with the phenotype of an individual, similarly as in GP. 

Because the individuals of TE and TLTE are represented only 

by phenotype, it was possible to implement these advanced 

methods in the course of evolution: 

 an effective change of the rules in the course of 

evolution, without the loss of generated solutions, 

 a difference of probability in the selection of rules 
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from the set of rules and the possibility of this 

changing during the evolutionary process, 

 the possibility of using methods of direct reduction 

of the tree using algebraic operations, 

 there is a possible to insert some solutions into the 

population, in the form of an inline entry of 

phenotype (for example: Uk-1 + Ek + Ek-1 * num), 

 new methods of crossover are possible to use, (for 

example crossover by linking trees) 

 etc. 

A. Initialization of individual 

During the initialization, the generative grammar rules are 

used. These rules are selected randomly from the set of rules 

by the following equation:  

Where: random is a pseudo-random number generator, 

maxInt is a high number, % is the remainder operator 

(modulus), and rules_count denotes the number of possible 

rules to transcribe a given non-terminal symbol. 

The algorithm TE which is described by (1) differs by the 

way of initialization of individual in Grammatical Evolution 

(GE). The Original initialization algorithm GE uses forward 

processing of grammatical rules. In the Grammatical 

Evolution the method of crossover and mutation are made on 

the genotype level. The phenotype is created by a later 

translation of this genotype. This way of mutation and 

crossover does not allow the using of advanced method in 

crossover and mutation operators, which does not destruct the 

already created parts of the individual [3]. During the 

evolution of this algorithm the Backward Processing of Rules 

(BPR) [7] arose [11]. The BPR method uses gene marking. 

This approach has the hidden knowledge of tree structure. Due 

to the BPR the advanced and effective methods of crossover 

and mutation can be used. Anyhow the BPR method has some 

disadvantages. Due to these disadvantages the new method 

Transplant Evolution (TE) was created. The TE method does 

not store genotype information. The equation (1) is used for 

the selection of a rule from rules base. The advantage of TE is 

the possibility to use both types of grammatical processing 

(forward and backward) with the same results, because TE 

works only with the phenotype and the procedure of 

phenotype creation is not important. Some examples of 

forward and backward initializations are shown in Fig.1 and 

Fig.2. The phenotype in these cases has the following structure 

Uk-1 + 2* Ek + 5 * Ek-1. 

In column A are shown the randomly generated gene 

values. These values are not stored anywhere! The values are 

generated only when is necessary to select from more 

grammatical rules. In column B is shown the arithmetic 

operation. In column C is shown a state of rules translation, 

but it must be remembered that the translation rules is done at 

the tree (in the nodes of the phenotype). In column F is the 

order of operations. These numbers are used for a description 

of the tree nodes initialization order. The tree initialization is 

shown at column G. Each node of the tree in column G is 

described by a number in the form Step X-Y. In the Step X-Y, 

X represents the step in which the node was created. Y 

represents the step in which the node was fully initialized 

(after initialization all of its subnodes).  

As you can see, the finite tree structures are the same, but 

they have a different order of fully initialization. The 

generated numbers in column A were changed too. 

 

Fig. 1. Translation in GE (forward processing) [6] 

 (1)
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Fig. 2. Translation in GE (backward processing) [7] 

 

Both the examples of initialization of the individual 

expected generative grammar rules (productive rules) are in 

prefix form. The generative grammar is defined in TABLE 1. 

The rules in this table are written in Backus Naur Form (BNF) 

[1]. The main principle of the initialization of individual in 

Transplant Evolution is described by the recurrent pseudo-

code in Fig. 3. In this pseudo-code it can be seen that some 

rules can be disabled or the probability of selection can be 

changed. This possibility can be seen on row 2 in Fig. 3. The 

random selection of rule from rule base are shown on row 9. 

This approach is realized by the method called Get_ 

random_rule. The method CreateSubTree on row 11 creates 

the subtree of present tree. 

B. Crossover 

The crossover is a distinctive tool for genetic algorithms 

and is one of the methods in evolutionary algorithms that are 

able to acquire a new population of individuals. The crossover 

is realized in a similar way as in Genetic Programming (GP) 

[2]. 

The TE uses three types of crossover. The first type of 

crossover is named crossover the parts of trees, the second 

type is named crossover of nodes, and the third type is named 

crossover by linking trees. The nodes or subparts of trees in 

the individuals for crossover are selected randomly. 

In the case of the method crossover of nodes it is necessary 

to keep change of the same types of nodes. This request is 

possible to express by this relationship: 

               (2) 

The method of crossover by linking trees is a new method. 

This method creates one offspring from two parents. The parts 

of the parents are linked by the newly generated node.  

The newly generated node has two subparts. The first one of 

them is the tree of the first parent and the second one of them 

is the tree of the second parent. 

 

TABLE 1. Generative grammar 
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Fig.3. Pseudo-code of initialization of individuals 

C. Mutation 

Mutation is the second operator to obtain new individuals. 

This operator can add new structures, which are not included 

in the population so far. Mutation is performed on individuals 

from the old population. The nodes in the individuals for 

mutation are selected randomly. The mutation operator can be 

subdivided into two types. The first type of mutation is non-

structural mutation and second type is structural mutation. 

Structural mutation can be divided into shortening structural 

mutation and extending structural mutation. The mutation 

operator uses analytic grammar and generative grammar rules. 

Non-structural mutation does not affect the structure of the 

already generated individual. In the individual that is selected 

for mutation, the chosen nodes of the object sub-tree are 

further subjected to mutation. The mutation will randomly 

change the chosen nodes, whereas the used grammar is 

respected. For example it means that the mutated node, which 

is a function of two variables (i.e. + - 

by the node representing the function of one variable (unary 

minus, etc.) or only a variable (Ek, etc.), etc. See Fig.5. 

The selected node in the tree G1 is marked by an orange 

color (or a different level of gray). The tree after mutation is 

marked G2 and the mutated node is marked an orange color 

(or different level of gray) too. The mutation was made by the 

using of generative and analytic grammar. The operations with 

this grammar are marked in columns A, B, C, and F. The 

randomly generated value for rule selection are shown in 

column A. The modulus operations are shown in column B. 

The processing of rules is shown in column C.  

This example assumes the generative grammar rules in 

TABLE 1 and the analytic grammar rules in Table 2. 

TABLE 2. Analytic grammar (non-structural mutation) 

TABLE 3. Analytic grammar (extending structural mutation)  

 

 

 

 

 
 

 
 

 

Fig. 4. Crossover by linking trees 

 

 

 

Fig.5. Non-structural mutation 
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TABLE 4. Analytic grammar (shortening structural mutation)  

 

 

TABLE 5. Generative grammar (expansion for analytic 
grammar)  

 

 
Structural mutations, unlike non-structural mutations, affect 

the tree structure of individuals. Changes of the sub-tree by 

extending or shortening its parts depend on the method of 

structural mutations. Structural mutation can be divided into 

two types: Structural mutation which is extending an object 

tree structure and structural mutation which is shortening a 

tree structure. In the case of the extending structural mutation, 

a randomly selected node is replaced by a part of the newly 

created sub-tree that respects the rules of the defined grammar 

[11, [12]. Conversely the shortening structural mutation 

replaces a randomly selected node of the tree, including its 

child nodes, by a node which is described by a terminal 

symbol (i.e. a variable or a number). This type of mutation can 

be regarded as a method of indirectly reducing the complexity 

of the object tree [12].  

On this figure there are presented two trees, which are 

marked G1 and G2. In the case of the shortening mutation the 

mutation is done from tree G1 to tree G2, through the 

operations which are shown in columns A, B, C, and F (above 

the arrows). In the case of the extending mutation the mutation 

is done from tree G2 to tree G1, through the operations which 

are shown in columns A, B, C, and F (under the arrows). The 

randomly generated values for selection of the rules are shown 

in column A, the arithmetic operation modulus is shown in 

column B, the processing of rules is shown in column C, and 

the order of operation is shown in column F. 

The operator of the structural mutation in Table 5 assumes 

the analytic grammar and generative grammar rules from 

tables Table 3, Table 4, and Table 1. 

III. TWO-LEVEL TRANSPLANT EVOLUTION 

The Two-Level Transplant Evolution (TLTE) is a new type 

of evolutionary algorithm that performs the optimization of 

structure in the first level and the parameters in the structure 

are optimized in the second level of optimization. The 

optimization of structure is realized by the Transplant 

Evolution (TE) and the optimization of abstract numerical 

parameters are realized by the Differential Evolution (DE) [6], 

or some other algorithm for numerical parameters 

optimization. Joining the two evolution algorithms has the 

goal to eliminate the very hard optimization of the numerical 

parameters by the grammar based evolutionary algorithms. 

The DE method was chosen for high power of optimization of 

the real number parameters. 

The generative grammar and analytic grammar rules are 

needed to be modified for the generation or mutation of 

abstract numerical parameters. To these grammar rules it is 

necessary to add these expansion rules.  

TABLE 6. Generative and analytic grammar (expansion for 
TLTE) 

 

 

A. Architecture 

From the implementation viewpoint, the joining of the two 

evolutionary algorithms is the most difficult process. For the 

best flexibility the interconnecting of three separate 

computational modules that are join by an interlayer were 

chosen. The interlayer mediates a communication among the 

modules and prepares data in the required form. With this 

implementation it is possible to use each module separately for 

another optimization problem, or similarly to change some 

module by another module. 

B. Transplant Evolution Module 

The transplant Evolution Module (MTE) (see Fig.6) ensures 

optimization of the structure of controllers. The principle of 

this algorithm was described in the article TLTE. Its task is to 

create a population of individuals which uses generative 

grammar G and analytic grammar G
-1

. This module can make 

a numerical optimization of parameters in the structure 

solutions too, but the quality is not so good as in the case of 

the two-level structure. Optimization of the parameters is 

provided by the Differential Evolution Module (MDE). The 

agent for the communication between these layers is the 

Interlayer, which is responsible for preparing the data in the 

desired form for each module. The input parameters for the 

MTE are the generative grammar rules P and the analytic 

grammar rules P
-1

, which leads to the evolution of individuals 

(solutions). The output parameter of the MTE is a fully 

optimized solution that includes both the appropriate structure, 

and its parameters. 

C. Differential Evolution Module 

The Differential Evolution Module (MDE), see Fig. 6 ensures 

the optimization of abstract parameters in the structure of the 

individual. The principle function of Differential Evolution 

(DE) is explained for example in [8]. This module is activated 

by the Interlayer, which gives it the vector of variables  as one 

of the input parameters. The number of parameters of this 

vector is equal to the number of variables, which was included 

in the structure of the solutions that came from the MTE. The 

output parameter MDE is the optimized vector of parameters 

that is sent into the Interlayer.  
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D. Fitness Module 

The fitness Module (FM), see Fig. , provides an evaluation of 

the models. The model is some structure of the solutions, 

including some parameters. This model, together with the 

controlled system is the input of simulation. For a given 

controller and controlled system, the simulation of regulation 

is started. The quality of model is included in the fitness 

function after the finishing of the simulation. The evaluated 

model is send to the Interlayer. 

E. Interlayer 

The Interlayer, see Fig. 6 is the most important part in the 

whole architecture of Two-Level architecture. The Interlayer 

is the main module, which holds instances of all the 

computational modules. The interlayer provides 

communication among the computational modules through the 

communication interface. This module contains the knowledge 

about the strategy of optimization so this means what to be 

optimized and how to optimize it. The interlayer controls the 

parameters of all the computational modules (MTE, MDE, and 

FM), for example: size of populations TE or DE, number of 

generations, type of selection methods, set of probability of 

crossover and mutation, etc. The interlayer makes the 

communication with an Output Module (OM). The OM is a 

graphical output, which shows the evolution outputs, 

simulation of control outputs, etc. The most important task of 

the interlayer is data preparation in the correct form during the 

communication among the computational modules, for 

example during the request for fitness evaluation, see Fig. 6. 

From this perspective, the tasks can be divided as follows: 

 To create the vector of symbolic variables for MDE 

during the communication with MTE. 

 The abstract variables will be set by concrete 

optimized parameters in abstract variables after the 

finishing of the optimization. 

 To send a full model of the solution (structure + 

parameters) to the FM, during the request of the MTE 

for the calculation of the quality of an individual,  

 

Fig. 6. Architecture and data flow in TLTE 
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 which does not include any abstract parameter. 

 

IV. FITNESS CRITERIONS  

Considering the uses of the transplant evolution for the 

optimizing of the general controller, the fitness function was 

experimentally defined as the multi-criteria function of: 

 Integral criterions: , , 

,    

   ,                (3) 

 The count of extremes of controlled variable 

 Average control error at the end of desired value interval 

 A ratio of the number of points in the control error 

tolerance to the total number of points 

 A ratio of the length of the curve of the controlled 

variable to the length of the curve of the desired variable 

 Maximal absolute overshoot of controlled variable 

 Maximal absolute overshoot of manipulated variable  

The target of optimization is to minimize the ITAE, 

minimize the count of extremes of controlled variable, to 

maximize the number of points within the control error 

tolerance, minimize the maximal overshoot of the manipulated 

variable and controlled variable. 

The fitness criterions are shown on Fig. 7. 

V. RESULTS 

We tested the TLTE method for the optimization of the 

recurrent equation of general controllers [11], [12]. Here there 

are some results of the optimization for the following system. 

A. Integral system with a transport delay 

 

                                                 (4) 

In Fig.8 we compare 3 types of controllers. There is one 

PSD controller marked PSD_DE and two general controllers 

marked General_DE and General_TLTE. The curve marked 

PSD_DE is the PSD controller. The parameters (Kr, Ti, Td) of 

this controller were optimized by Differential Evolution (DE).  

The curve marked General DE is for the general controller 

which has the control equation in PSD equation form, but the 

parameters q0, q1, q2 were optimized directly by DE. The 

relation between q0, q1, q2 and Kr, Ti, Td is described in [11]. 

The curve marked General_TLTE is for the general controller 

with a general control equation that was optimized by Two-

Level Transplant Evolution (TLTE). As you can see, the best 

result is given by the General_TLTE.  

 
Fig. 2. Step response for  integration system with time delay 

 

 

Fig. 7. Fitness criterions of control process 
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In this case we receive the recurrent control equation with 

the following form: 

 

Uk = (Ek_5+(((-((Ek_5*(-4.692)) - (- (((Yk*5.148) * 

Yk_3*1.596))+((Ek_5+22.28)*Ek_2))*(Uk_2*(-3.809E-

6)))))+((11.943*Ek)+(((-0.3224)*Uk_3)+((-18.54) 

*Ek_2))))+(Ek_1+(-0.003999)))) 

 

VI. CONCLUSION  

The Two-Level Transplant Evolution (TLTE) was 

successfully used for the automatic generation of control 

programs of general controllers. We tested this algorithm on 

many problems, only two examples were described in this 

paper. We hope that this new method of controller design will 

be used in practice, not only for simulation.  
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